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Abstract 

A method is described  for  calibrating  cameras  including  radial  lens  distortion,  by 
using known points  such as those  measured  from a calibration fixture. The distortion 
terms  are  relative to the  optical  axis, which is included in the model so that it does not 
have  to be orthogonal to the  image  sensor plane. A priori  standard  deviations  can be used 
to apply  weight  to zero values for the  distortion  terms  and to zero  difference  between  the 
optical  axis and the  perpendicular to the  sensor plane, so that the  solution for these is well 
determined when there is insufficient  information  in  the  calibration data. The initial 
approximations needed for  the  nonlinear  least-squares  adjustment are obtained  in a 
simple  manner  from  the  calibration  data  and  other known information. Outliers among 
the  calibration  points are removed  by means of automatic  editing based on analysis of the 
residuals. The  use of the  camera  model  also is described,  including partial derivatives  for 
propagating both from  object  space to image  space  and  vice versa. 
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Rovlr U M @ r a  
The basic camera  model that we have been using in  the P L  robotics  laboratory  was 

originally developed here by Yakimovsky  and  Cunningham [8]. It  included a central 
(perspective) projection and an  arbitrary  affine  transformation  in  the  image  plane, but it 
did  not  include  lens distortion. In 1986, the  present  author  developed a better method of 
calibrating that model, by using a rigorous  least-squares  adjustment [5]. In 1990, that 
camera  model  and  the method for  its  calibration  were  extended to include  radial lens 
distortion [3]. An improved version was  described in a workshop  in  1992 [4]. This paper 
describes  the  improved  model,  the  adjustment algorithm, and  the  mathematics  for the use 
of the  camera  model,  including  subsequent  refinements.  However,  the method  of 
measuring  the  calibration  data  (finding  the  dots  in  images of  a calibration  fixture [SI) has 
not changed,  and  thus  its  description  will not be repeated here. 

The camera  model used here should be adequate  for  producing  accurate  geometric 
data,  except in the  following three situations. First, a fish-eye lens  has a very large 
distortion for which  the distortion polynomial used here would not  converge. (In fact,  the 
distortion as defined here  can be infinite,  since the field of view can  exceed 180".) For 
such a lens the image  coordinate should be  represented as being ideally proportional to 
the  off-axis  angle,  instead of the  tangent of this  angle as in  the  perspective  projection. 
Then, a small  distortion  could be added on top of this. Furthermore,  the  position of the 
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entrance  pupil of a fish-eye  lens  varies  greatly with the  off-axis angle to the object; 
therefore, this variation would have to be modelled unless  all viewed objects are very far 
away. Second,  even  for  an ordinary lens,  the  entrance  pupil  moves  slightly, so that if 
objects very close to the  lens  are  viewed,  the variation again would have to be included in 
the  camera model. Third, if there is appreciable  nonradial  distortion,  such as might be 
produced by distortion in the  image  sensor itself or by a lens with badly  misaligned 
elements,  it would require a more  elaborate  model than the radial  distortion used here. 
However,  this  situation  should  not  occur with a CCD  camera  with a well-made  lens, 
unless an  anamorphic  lens is used. (A  small  amount of decentering  in  the  lens and a 
CCD synchronization  error  that is a linear  function of the  position in the image  are 
subsumed by terms  included in the  camera model.) 

The calibration  method presented here  applies  at only one  lens setting. For a zoom 
lens, a separate  calibration would have to be done  at  each zoom setting. Similarly, if 
focus  is  changed, a separate  calibration is needed at each  focus  setting. 

In  this  paper,  for  physical  vectors in three-dimensional  space,  the  dot  product will be 
indicated  by - and the  cross  product by X. For any such  vector v, its  length (6) will be 
represented by IvI, and the unit  vector  in  its direction (v/lvl) will be represented  by 
unit(v). The derivative of a vector  relative  to a scalar  will be considered  to be a vector, 
the  derivative of a scalar  relative  to a vector  will be considered  to  be a row  vector,  and 
the  derivative of a vector  relative to a vector will be considered to be a matrix. 

2 Definition of Camera Model 

2.1 Camera  Model  without  Distortion 

The old camera  model [8] (without  distortion)  consisted of the  four  3-vectors c, a, h, 
and v,  expressed  in  object  (world)  coordinates, which have  the  following meanings. The 
entrance  pupil  point of the  camera  lens is at position c. Let a perpendicular be dropped 
from  the  exit  pupil  point  to  the  image  sensor  plane,  and  let  its  point of intersection with 
this  plane be denoted by x, and yc in  image coordinates. (Decentering  in  the  lens  causes 
the  actual  values of xc and y, to  differ  from  those  according  this definition.) Then a is a 
unit vector  parallel to this  perpendicular and pointing  outwards  from  the  camera to the 
scene. Furthermore,  let v’ and h’ be  vectors  in  the  sensor  plane  and  perpendicular  to  the x 
and y image  axes,  respectively (usually considered  to be horizontal  and  vertical, 
respectively,  but  not necessarily orthogonal) of the  image  coordinate  system, with each 
magnitude  equal  to  the  change  in  the  image  coordinate (usually measured  in pixels) 
caused by a change of unity in the tangent of the  angle  from  the a vector to  the viewed 
point,  subtended at the  entrance  pupil point. (If the entrance  and  exit  pupil  points 
coincide with the  first and second nodal points, as is approximately the case  for  typical 
cameras  with  other than zoom or  telephoto  lenses,  this is equivalent to saying that the 
magnitude of h’ or v’ is equal  to  the  distance  from  the  second  nodal  point to the  sensor 
plane, expressed in horizontal pixels  or  vertical  pixels, respectively.) Then h = h’ + xca 
and v = v’ + yca. Although  these  definitions may seem  rather  peculiar, they result  in 
convenient  expressions for the image  coordinates  in  terms of the position p of a point  in 
three-dimensional  object  space, as follows: 



The  above equations  are  given  here  merely to show  the  mathematical  relationship 
represented by the  camera  model  excluding distortion. In @e equations used below for 
actual  data,  the  subscript i will  be used on quantities associated with individual  measured 
points. 

The position c used above  often is referred to as the  perspective center. Sometimes, 
this is assumed to be the  first  nodal  point of the  lens  (the  same as the  first  principal point 
if the medium is the  same on both sides of the lens). However,  the  rays  from  the  object 
(extended as straight  lines)  must  pass  through the entrance  pupil if they  are  to reach the 
image, so the  center of the  entrance  pupil is the position from which the  camera  seems  to 
view the world. Similarly,  the  rays  to  the  image  seem to emanate  from  the  exit pupil. If 
all viewed objects are at the same  distance and the camera is perfectly  focused,  there is 
no  detectable  difference  between using nodal  points  instead of pupil  points in the  above 
definitions, but in  general the distinction should be made;  and, if all calibration  points are 
at  the  same  distance,  the  calibration  cannot  determine c anyway.  Of course, 
mathematically  the  camera  model is defined  by the equations, so the  physical  meaning of 
the parameters  does  not  matter  for  calibration  purposes,  as  long  as  they are able  to 
capture  the  degrees of freedom  in  the  physical  situation,  and as long as the  same 
equations are used in  the  camera  model  adjustment and in the use of the camera model. 
(For  definitions of the  terms used here, see any  optics  textbook,  for  example  Jenkins  and 
White [6]). 

2.2 Inclusion of Distortion 

Because of symmetry,  the  dispacement  due  to  radial distortion is a polynomial (in 
the  distance  from  the  optical  axis)  containing only odd-order terms. The first-order  term 
is subsumed by the scale  factors  included  in h and v, if a is along  the  optical  axis of the 
lens or if the  pupil  points  coincide with the respective nodal points,  but  it  must be 
included  in  the  general case. 

The distortion polynomial  must be defined relative  to the optical  axis of the  lens,  in 
order for  the  distortion to be radial. If the  image  sensor  plane is perpendicular to the 
optical  axis,  this is the a vector. However,  to  allow for  the  possibility  that they are not 
exactly  perpendicular, a separate unit vector o is used here for  the  optical  axis.  Note that 
if there is no distortion and the  pupil  points  coincide with the  nodal  points, it is 
impossible for the  calibration  to  determine the optical axis. (A central  projection is 
equivalent to using a pinhole  camera, and a pinhole  has no axis.) Therefore,  some a 
priori  weight  will be applied here to tend to  make  the o vector  equal to the a vector, so 
that it will be well  determined when there is not much distortion. However, when there is 
a large  distortion,  the  data  will  outweigh  this a priori  information,  and  the  two  vectors  can 
differ. 

-3- 



Let pi be the  three-dimensional position of any point  being viewed. Then  the 
component  parallel to the optical  axis of the  distance  to  the  point is 

Q = (p i  - c).o (3) 

The vector  to  the  point  orthogonally  from  the  optical axis is 

xi = p i - c - Q o  (4) 

The square of the  tangent of the  angle  from  the  optical  axis to the  point (subtended at the 
entrance  pupil  point) is 

We  can define a proportionality  coefficient pi ,  that produces  the  amount of distortion 
when multiplied by the off-axis  distance to the  point, as a polynomial  containing only 
even-order  terms  (since we have  factored  out  the  first power). Since z;: is proportional  to 
the  square of this  off-axis  distance,  this  polynomial can be written as follows: 

pi = po +PIT +p2z;: 2 + ... (6) 

where  the p's  are  the  distortion coefficients. We use only coefficients  up  to p2,  since 
higher-order  terms  are  negligible  except for wide-angle lenses. (In fact, often p2 is 
negligible.) Some a priori weight (usually a small  amount) will be applied to tend to 
make the p's  equal to zero, so that they will be well  determined when there is not  enough 
information  in  the  calibration  images.  (This is especially  important  for high-order 
coefficients when there  are not many calibration  points,  and  for po if o and a are nearly 
equal or if the  pupil  points nearly coincide with the  nodal points.) Note  that po does  not 
actually represent  radial  distortion  in  the usual sense, but is merely a scale  factor in the 
plane  orthogonal  to 0, whereas  the  scale  factors  included  in h and v are  in a plane 
orthogonal to a. 

The effect of distortion can now be written as follows: 

p; = p i  +pix i  (7) 

where pi  is the true position of the  point  and pi is its apparent position because of 
distortion. 

Then  the distorted point  can be projected into  image  coordinates (denoted by ii and si) by using p: instead of p in (1, 2).  However,  for  efficiency these equations are 
expressed  in  terms of the  intermediate  quantities q, pi ,  and x ,  as follows,  since  these 
quantities  will be needed again in  later sections: 
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4 i. = - ' q  

8 
j j i  = - 

ai 
(The reason  for  using the circumflex over x and y is to represent computed values, to 
distinguish them from  measured  values that will be  used  in Section 4.) 

Therefore, the complete  camera model consists of  the five vectors c, a, h, v, and 0, 
where a and o are unit vectors, and the distortion coefficients po, pl, and p2.  This is 18 
parameters in all, of which two are redundant  because of the unit vectors. (The 
computations can be extended in a straightforward way to include  higher-order p's ,  if 
they are ever needed.) 

3 Partial  Derivatives 

Partial derivatives of several  quantities defined  in Section 2 will be needed in doing 
the least-squares  adjustment of the camera  model and  in propagating  error  estimates 
when using the camera  model.  These are as follows: 

an, 
" - I-ooT 

ani 
a0 
" - - L.1- o(p, - C)T 

- = p1 + 2p25 a? 
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where I is the 3-by-3 identity matrix. The  first  three of these (derivatives of X i  and pi )  are 
only intermediate  quantities needed in obtaining  the  others  and will not be used 
elsewhere. 

4 Adjustment of Camera  Model 

4.1 Data for Adjustment 

The calibration  data  consists of a set of points, with for each  point i its 
three-dimensional position pi in object  coordinates and its  measured  two-dimensional 
position 3 and yi in  image  coordinates.  Given  information  consists of the following:  the 
a priori standard  deviation od (in radians) of the difference between the  optical  axis o and 
the a vector, the a priori standard deviations  about  zero of each  distortion  coefficient oo, 
ol, and o2 (dimensionless  quantities that in effect  are  proportionality  constants when at an 
angle of 45’ from  the  optical  axis),  the minimum standard  deviation of measured 
image-coordinate  positions om, the nominal focal  length of the  camera f ,  the  nominal 
horizontal and vertical pixel spacings ph and p,  (in the same  units  as a, the  number of 
columns sh and rows s, of pixels  in  the  camera, and the  approximate  position of the 
camera c, in object  coordinates.  (Reasonable  values for the  standard  deviations are od = 
0.01, oo = 1 for zoom and  telephoto  lenses  or 0.1 for ordinary lenses, o1 = 1, and o2 = 1. 
On the  other  hand,  any of the p’s  could be forced to be zero, if desired, by making  their 
standard deviations very small,  perhaps  The  quantities f ,  4, p,, $, s,, and co are 
used primarily  in  obtaining an initial  approximation  for  iterating,  and  thus  their  exact 
values are not  important.) The desired result  consists of the  camera  model  parameters 
defined in  Section  2, which where  convenient will be assembled  into  the  18-vector g = 
[cT aT hT vT oT po p1 pJT, and  their  18-by-18  covariance  matrix Cgg, which indicates  the 
accuracy of the result. 

In  order to obtain a solution,  the  input  points  must not be all  coplanar,  and  they  must 
be  distributed  over  the  image space. Since  there  are 16 independent  parameters  in  the 
camera  model and each  point  contains  two  dimensions of information  in the image  plane, 
at  least 8 points  are needed, or 6 if the a priori standard deviations are small  enough  to 
add appreciable information. However, it is highly desirable  to  have  considerably  more 
points than this minimum in  order obtain an  accurate  solution for all of the parameters. 

4.2 Initialization 

In order  to  obtain  initial  values  for  iterating,  first a point  close to the camera  axis is 
found by selecting pa to be the pi for which x and y are  closest  to  sh/2  and sv/2, 
respectively.  Then  this and the given  data are used to  compute  the  initial  approximations 
to  the  camera  model  vectors, as follows: 
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a. = unit(p, - co) 

f ‘h 

f ‘v 

PV 2 

ho = - unit(ao X u) + - a. 
p h  2 

vo = - unit(ao X hJ + - a. 

oo = a. 

where u is a vector  pointing  upwards  in  object  space,  and  where it is assumed that the 
image x axis  points  to  the  right  and the image y axis  points down (from the upper left 
corner of the  image). (If the y axis  points up in the  image,  the  sign of vo should be 
reversed.) The initial  values for p,,, p l ,  and pz are zero. 

The a priori  weight  matrix is computed  as follows: 
- - 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  

0 0 0 - 0 0 0 0 0 0 0 0 - - 0 0 0 0 0  

0 0 0 0 - 0 0 0 0 0 0 0 0 - - 0 0 0 0  

0 0 0 0 0 -  0 0 0 0 0 0 0 0 - - 0 0 0  

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  

1 1 

4 4 
4 4 

4 4 

N o =  (27) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
1 

0 0 O - - - , O  0 0 0 0 0 0 0 - l o o o o o  
ad 1 4 

0 0 0 0 - - 0  0 0 0 0 0 0 0 -  0 0 0 0  

0 0 0 0 0 - - 0 0 0 0 0 0 0 0 -   0 0 0  

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -  0 0  

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -  0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -  

4 4 
4 4 

4 
0,” 

4 - - 
where  the  fact  that  the  off-diagonal terms for a and o are the  negative of the 
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main-diagonal  terms  causes  the standard deviation od to apply to the  difference of a and 
0. Additional weight can be applied to any  other of the  initial  approximation  values, by 
adding  the  reciprocal of the variance to the  appropriate main diagonal  element of No. For 
example,  the  position of the  camera may be known sufficiently  well  to  enter  this 
information  into  the  solution by adding  appropriate  weight  in  the  first  three  diagonal 
elements of No. 

4.3 Iterative  Solution 

The method  described  here  does a rigorous  least-squares  adjustment [7] in which the 
camera  model  parameters  are adjusted to minimize  the sum of the squares of the  residuals 
(differences  between  measured and adjusted positions of points) in  the  image plane. 
Since  the  problem is nonlinear,  this  requires  an  iterative solution. However,  the  method 
converges  rapidly unless far  from  the  correct  solution,  and a reasonably good 
approximation  to start the  iterations  was obtained in  Section 4.2. 

The program  has  an  inner  loop  for  iterating the nonlinear  solution and an  outer  loop 
for editing  (removing  erroneous  points)  by a previously developed  general  method [ 1,2]. 
The  steps  in these computations  for the problem here are as follows. 

1. (This is the  beginning of the  edit loop.) Set c, a, h, v, and o to their  initial 
approximations (eo, ao, ho, vo, and 03, set po ,   p l ,  and p2 to zero,  and set the estimated 
measurement  variance o2 to I, as an initial approximation. 

2. (This is  the  beginning of the  iteration loop.) First, the  2-by-18  matrix of partial 
derivatives of the  constraints  (unit(a) = 1 and unit(o) = 1)  relative  to g (the parameters) is 

K = [  
0 0 0  unit(alT O O O O O O O O O O O O  

O O O O O O O O O O O O  unit(olT 0 0 0  

For  each  point i currently  retained,  compute ii, fi, and  the  preliminary  quantities by the 
equations  in  Section 2.2; and  compute  the  partial  derivatives of PI, Zi,  and Yi  as in  Section 
3. Then the 2-by- 18 matrix of partial  derivatives of ii and Y i  relative to g is 

(since d?/dc = - a i i / d p i ,  and  similarly for fi), and  the  discrepancies  between  measured 
and computed  data  are 
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ei = [%-:I (30) 
Yi - Yi 

Compute  the  matrix of coefficients in the  normal  equations N (18-by-18), the "constants" 
in  the normal equations t (18-by-l), and the  sum of the  squares of the  discrepancies 
(which become  the  residuals  when  the  solution  has  converged) q as follows: 

r 1 

L "I 

q = x e : e i  
i 

where  the  summations are over  all  points  currently  retained, n is the  total  number of these 
points, g represents the current  parameter  values, and go represents  the a priori  parameter 
values  (initial approximations). The first term in (31) and (32) applies the a priori  weight 
to  the  initial  values, and the  second term applies  some  weight to the constraints. These 
constraint  terms  have  mathematically  have no effect on the  solution,  since  the  exact 
constraints  are applied below  in  steps 3 and 5. However, they are  necessary  to  prevent 
the  solution  without  the  constraints  from being singular, and that will be computed  first 
(in  step 3, as N-lt) before  the  constraint  equation is applied. The  scale  factor  chosen  for 
these  terms  above  cause them to  have  about the same  magnitude as  the  result of the  main 
summation  for N, so that numerical accuracy is preserved. 

3. Compute  the  following  (using  the  exact  general  constraint  equations provided by 
Mikhail [7]):- 

M = m " K T  (34) 

d = N" t + N"K'lh4-l 

\ 

1 ,  - KN"t 

Note that a and o are  unit  vectors on the  first iteration (because of the  initial 
approximations)  and  on  the  last iteration (within the  convergence  tolerance), but on 
intermediate  iterations they in general are not. The comparison of their  magnitudes with 
unity in  the  above  equation is what  causes  them to converge to unit vectors. Then  add d 
to the current  values of the  camera  model  parameters to produce  the new values, as 
follows: 
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The  estimate of measurement  variance is 

where n is the number of points currently retained (not rejected),  that  is, the number of 
points actually used to obtain q. The  denominator in (37) would be 2n - 16 if there were 
no a priori weights. The value 2n - 14  is  an  approximation, based on the fact that there 
usually is a large  a priori weight  forcing o to be nearly  equal to a, but not much weight 
forcing po, pl,  and pz to be nearly zero. The  exact  value is not very important, since the 
number of measurements 2n usually is much larger than 14, and usually not much 
accuracy  is needed or is attainable with variances,  anyway. 

4. If the magnitude (length of vector) of the change in c (first three elements of d) is 
less than 10-51p,-coI, the magnitude of the change in a (second  three  elements of d) is 
less than the magnitude of the change in h (third three elements of d) is less than 
10-5f/ph, the magnitude of the change in v (fourth three elements of d) is  less than 
10-5f/pv, the magnitude of the change in o (fifth three elements of d) is  less than 
and the absolute values of the changes in the p's (the last three elements of d) are each 
less than lob3, then go to step 5 (exit from the iteration loop).  Otherwise, if too  many 
iterations have occurred  (perhaps 20), give up. Otherwise,  go to step 2. (This is the end 
of the iteration loop.) 

5. The  covariance  matrix of the parameters  is 

If this is the first  time here, go to step 8. 

6. For the last point tentatively rejected, recompute e, and Ai as in step 2 using the 
latest  values of the camera  model  parameters.  Then, 

5 = eT(cA + AiCggAT)-'ei (39) 

where I is the 2-by-2 identity matrix. If 5 > 16, reject this point. Otherwise,  go to step 9 
(exit from the edit  loop). 

7. If too  many points have been rejected (perhaps 10) give up. 

8. For each  current point, use the most recent values in  the following: 

Tentatively reject the point with the greatest 5.  Then go to step 1. (This is the end of the 
edit loop.) 
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9. Reinstate  the tentatively rejected point,  and back  up to  the  solution  computed 
using this point. Use  the  results  from this old solution  below, and finish  successfully. 

If the  run is successful,  the  camera  model  parameters g and  their  covariance  matrix 
Css are the result. 

A possible  improvement that may be  desirable  in  the  case of grossly  nonsquare 
pixels  would be to compute  separate q’s for each  image  dimension by summing the 
squares of the  discrepancies  separately  for x and y instead of using  (33),  and by dividing 
by n - 7 instead of 2n - 14 in (37) to obtain the  two variances. Then a 2-by-2  weight 
matrix with the  reciprocal of these  variances on the  main  diagonal would be included  in 
the  summations  in (31) and  (32) in the  usual way [7], instead of factoring  the  variance  out 
as above. 

5 Use of Camera  Model 

5.1 Projecting  from  Object Space to  Image  Space 

When a point pi in  three-dimensional  space is available and it is desired to compute 
its projection into an image, pi and the camera  model  computed  in  Section 4 are used in 
(3-12) in  Section 2.2 to compute ii and 9i. 

Often the partial derivatives of the  above  projection are needed (for  error 
propagation  or  in a least-squares  adjustment).  These  are  obtained  as follows: 

in terms of the  partial  derivatives defined in  Section 
not much accuracy is needed in partial derivatives. 

3. However, for  most  applications 
Therefore, when the distortion is 

small ( I p , l  << 1, I << 1, and l p z l - < <  1)  and speed is important,  sufficient  accuracy may 
be obtained by assuming that ap5/api is the  identity  matrix, so that the  following  results: 

Using  these  approximations  can  result  in  significant  savings in time if many points  are  to 
be projected,  since  the  computation of ap;/api is considerably  more involved than is the 
computation of dii/dp; and $ji/dp;, as  can be seen  in  Section 3. 
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5.2 Projecting  from  Image  Space  to  Object  Space 

Sometimes a point  in  the  image (5 and y i )  is given and it is desired to project  it as a 
ray  in  space (represented by the unit  vector ri). This  can be done  by  first  projecting  the 
ray  neglecting  distortion, as follows: 

r: = sign(a-vxh) unit[(v - yia)x(h - $a)] (45) 

where “sign” = & 1 according to whether  its  argument is positive or negative. Then  the 
distortion can be added by  one of two  methods. 

In  the  first  method, (3-7) are used with pi - c replaced by ri and p: - c replaced by r: 
(which is equivalent to considering a point  at  unit  distance), to produce the following: 

X i  = ri - G O  

ri = unit(r; -,uiXi) (50) 

where we have had to rescale ri to  force it to be a unit vector, since  otherwise  the 
distortion  correction  changes only the  component of the  vector  perpendicular to the 
optical  axis, and thus changes  the  length of the vector. However,  the  equations  in  Section 
2.2 were designed to go  from  the unprimed to the primed quantities, and here  the 
opposite is desired.  Therefore,  in  this  method  an  iterative  solution is done as follows: on 
the  first  iteration, ri is set  equal to r;; then an improved ri is computed  as  above  on  each 
iteration. The values of the  other  quantities  from  the  last  iteration  also are needed below 
if partial  derivatives are computed. 

The second  method is faster and is the  one  that  has been implemented.  It  can be 
derived by manipulating  (46-50) to produce  the  following: 

p2f2(1 - 4 7 5  + p l q l  -&)3 + (1 +po)(l -&) - 1 = 0 (54) 

Equation (54) can be solved for pl! by  Newton’s method (using ,u1! = 0 as the initial 
approximation). Then, 
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However, if partial derivatives are to be  computed  below,  corrected  values of &, Ai, 5, 
and pi must be computed  as  in  the  first  method, by using (46-49) . (Now only one 
iteration is needed,  since ri has already been obtained.) 

The partial  derivatives of the  projection  into a ray can be obtained by differentiating 
(45) with respect to x;: and yi, to obtain the  following: 

&; sign(a-vxh)(I - rirlT[(v - yia)xa] 
a% " - - (56) 

I(v - yia)x(h - x;:a)l 

ari sign(a-vxh)(I - r]rT)[@ - x,a)xa] 
" 

aYi 
- 

I(v - yia)x(h - xia)l (57) 

Then  the  effect of distortion  can be included by computing  the  partial  derivatives as in 
Section 3, with pi  - c replaced by ri and with a rescaling  because of the  change  in 
magnitude  due to (50), to produce  the  following: 

Then,  since the transformation  in  the  other  direction is 
is used, as follows: 

desired,  the  inverse of the  matrix 

As in projecting in the other direction, this  correction of the  partial  derivatives  for 
distortion can  be omitted when speed is important  and  not much accuracy is needed, if 
the  distortion is small. 
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